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Monomial Ideals and Leading Terms

Want to be able to move from ideals in a polynomial ring to ideals
generated by a finite set of monomials - these are monomial ideals

The natural thing to do is to fix a monomial order on the ideal I and
take the ideal generated by the leading term of every polynomial in
the ideal, ⟨LT (I )⟩

e.g. A lexicographic ordering on the polynomial ring K [x , y , z ] with
x > y > z implies x2 > y2, x2 > xz , etc.

This may be unworkable - we would rather take only the leading
terms of the generators of I = ⟨f1, . . . , fn⟩. But ⟨LT (I )⟩ does not
always equal ⟨LT (f1), . . . LT (fs)⟩!

Take I = ⟨f1, f2⟩ = ⟨x2 + 2xy2, xy + 2y3 − 1⟩. x = x ∗ f2 − y ∗ f1, so x ∈ I .
LT (x) = x ∈ I , but think about ⟨LT (f1), LT (f2)⟩ = ⟨x2, xy⟩. x ̸∈ ⟨x2, xy⟩!
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Gröbner Bases and Ideal Membership

So we need to find a generating set of polynomials g1, . . . gm such
that for a given ideal I , ⟨LT (I )⟩ = ⟨LT (g1), . . . LT (gm)⟩

The justification for this is Hilbert’s basis theorem, which says every
ideal in R is finitely generated!

Now fix a monomial order and consider an ideal I . A finite subset
G = {g1, . . . gm} is a Gröbner basis for I if
⟨LT (I )⟩ = ⟨LT (g1), . . . LT (gm)⟩
The immediate and extremely useful corollary is the following: let G
be a Gröbner basis for an ideal I ⊂ R. Then f ∈ I ⇐⇒ the
remainder after division of f by G is zero, where we divide f by G by
finding a linear combination of the generators such that

f = e1g1 + . . . emgm + r
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Buchberger’s Algorithm

Thinking about the relationship between ideal membership and
Gröbner bases leads nicely to a method for constructing them:
Buchberger’s Algorithm

Let the S-polynomial of f , g ∈ R is

S(f , g) =
LCM(LT (f ), LT (g))

LT (f )
f − LCM(LT (f ), LT (g))

LT (g)
g

Buchberger’s Criterion says a subset G = {g1, . . . gm} of an ideal is a
Gröbner basis iff S(gm, gn) has a remainder of zero after division by G

Buchberger’s Algorithm then allows us to construct a Gröbner basis
by adding any non-zero remainders of S(gm.gn) to the subset
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Using Buchberger’s Algorithm

Consider G = ⟨xy − x , x2 − y⟩. Fix the graded lexicographic order and
x > y . We want to see if this is a Gröbner basis, or if not, find one

LT (f1) = xy , LT (f2) = x2, LCM(LT (f1), LT (f2)) = x2y

S(f1, f2) =
x2y

xy
(xy − x) − x2y

x2
(x2 − y) = −x2 + y2

S(f1, f2) = −f2 + (y2 + y)

Let G ′ = ⟨xy − x , x2 − y , y2 + y⟩. Then S(f1, f2) = −f2 + f3

S(f1, f3) =
xy2

xy
(xy − x) − xy2

y2
(y2 + y) = 0

S(f2, f3) =
x2y2

x2
(x2 − y) − x2y2

y2
(y2 + y) = −2y3 ⇒ f3

Then G ′ = ⟨xy − x , x2 − y , y2 + y⟩ is a Gröbner basis.
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The Value Function in Reinforcement Learning

In a reinforcement learning setting, we are interested in an MDP
⟨S ,A,R,P, γ⟩. For a given policy π : S → P(A), the Bellman
equation for the value function gives us

(I − γPπ)V π = rπ

The policies π always live in the unit box and take the form

π =

[
p1 p2

1 − p1 1 − p2

]
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Solution Sets of Interval Matrix Equations

Because of the box constraints on our policies, we can reinterpret the
Bellman equation as an interval matrix equation of the form
A(p)x = b(p)

Solutions to interval matrix equations have been studied for a very
long time! In particular a result of [4] gives the following:

Consider for an interval matrix equation A(p)x = b(p), the parametric
solution set Σp = {x ∈ Rn|∃p ∈ [p],A(p)x = b(p)}.

Let K = {1, . . . , k} and consider Q(n − 1, k) the set of all subsets of
K containing n−1 elements. For a vector p ∈ Rk and q ∈ Q(n−1, k)
define q∗ = K/q and pq = (pi )i∈q and pq∗ = (pi )i∈q∗.

If A(p) is nonsingular for all p ∈ [p] and k ≤ n, then

∂Σp = ∪q∈Q(n−1,k){x(pq, p
−
q∗)|pq∈[pq ], x(pq, p

+
q∗)|pq∈[pq ]}
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Solution Sets of the Bellman Equation

Upshot of Popova’s theorem is a very cool result – the boundaries of
the polytope (or the image under A(p)) are given by images of the
boundaries of the parameter!

We can also use Popova’s theorem to calculate the boundaries of the
value function polytope! All we need is that A(p) = I − γPπ is
invertible over the parametric domain, which we get from a result in
[2]

In particular, for a fully observable MDP with basically unit
hyperparameters, we get

V π(p1, 0) =

[
0

1 − p1

]
,V π(p1, 1) =

[
−p1−2

p1

−2p1−2
p1

]

V π(0, p2) =

[
− 2p2

p2−1

−p2+1
p2−1

]
,V π(1, p2) =

[
p2
0

]
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Solution Sets of the Bellman Equation
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Implicitization with Gröbner Bases

Above, we obtained parametric descriptions of the boundaries of the
solution sets, but we’re interested the polytope as a purely geometric
object, and so would like to find an implicit description

The benefit of Gröbner bases in our case is implicitization, where we
use elimination algorithms to get only the variables we care about

Gröbner bases are especially good for implicitization because we only
need to get rid of the finitely many generators containing the
undesirable variables – not usually the case [3]

The implicitization algorithm for rational parametrizations from [1]
gives us

For an ideal J = ⟨x1 − f1
g1
, . . . , xn − fn

gn
⟩, where fi , gi ∈ k[t1, . . . , tm]

clear denominators to form the new ideal
J ′ = ⟨x1g1 − f1, . . . , xngn − fn, 1 − (

∏
gi )y⟩

Fix a lexographic monomial order with y > t1 > · · · > tm > x1 · · · > xn
and calculate a Gröbner basis for J ′

The elements of the Gröbner basis not containing y , t1, . . . , tm will be
the smallest variety containing the parametrization!
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Implicitizing the Boundary of the Value Function Polytope

Let’s do the same for the boundary of the VF polytope – we change
the hyperparametrization slightly to have γ = 0.9, giving

V1 = (v1, v2 − 1 − p1),V2 = (v1 −
−0.9p1 + 1.9

0.81p1 + 0.19
, v2 −

−1.9p1 + 1.9

0.81p1 + 0.19
)

V3 = (v1 −
−1.9p2

0.81p2 − 1
, v2 −

−0.9p2 − 1

0.81p2 − 1
),V4 = (v1 − p2, v2)

We only care about boundary pieces 2 and 3, where we clear
denominators to get

V ′
2 = ⟨(0.81p1 + 0.19)v1 − 0.9p1 + 1.9, (0.81p1 + 0.19)v2 − 1.9p1 + 1.9, 1 − (0.81p1 + 0.19)y⟩

V ′
3 = ⟨(0.81p1 + 0.19)v1 − 0.9p1 + 1.9, (0.81p1 + 0.19)v2 − 1.9p1 + 1.9, 1 − (0.81p1 + 0.19)y⟩

Elimination via Gröbner bases then gives

V ′
2 = ⟨10v1 − 9v2 − 10⟩

V ′
3 = ⟨9v1 − 10v2 + 10⟩
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Plotting the Solution Set via Implicit Equations
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Challenges with Implicitization

For equations of more than a few terms or indeterminates,
implicitization via Gröbner bases can be very slow

Moreover, depends on choice of monomial order – we used lex and
grlex, but in fact reverse graded lex is fastest

One other approach: estimating the variety from samples on the
curves
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