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Intro to Reinforcement Learning

Sutton and Barto [11] distinguish reinforcement learning from both
supervised and unsupervised learning — agents in RL must balance
exploitation with exploration

RL approaches have led to state of the art ML models such as
DeepSeek-R1 [2]; finding approaches to tractably solving POMDPs is
a hot problem at the moment [3]

Today: introduce interval arithmetic and algebraic methods to
understand geometry of optimization in partially observable RL
problems
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Parameterizing the RL Problem

Figure: Taken from [6]

Definition (Markov Decision Process)

An MDP is a tuple (S ,A,O, α, β, r , γ) where:

S ,A,O: finite set of states, actions, observations

β(s, o), α(s, a, s ′): probability of observing o given state s, probability
of moving to s ′ given (s, a)

r(s, a): reward of action a in state s with discount factor γ ∈ [0, 1)

Agents choose policies π : S → ∆A to navigate state space. Optimal
policy π∗ maximizes total rewards
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Differences Between MDPs

Researchers distinguish between fully observable and partially
observable MDPs

For fully observable MDPs, finding the optimal policy can be done in
polynomial time — this is impossible in partially observable setting [8]

Also distinguish between finite horizon and infinite horizon,
discounted rewards settings as well as memoryless policies vs policies
with memory

Policies with memory allow one to model a POMDP as an MDP, which
allows for finding an optimal policy via methods like policy iteration [12]

For fully observable MDPs, the optimal memoryless policy is
deterministic, but for POMDPs the generic optimal memoryless policy
is stochastic

With conditions on the entries of the observation kernel, then there
may exist an optimal memoryless deterministic policy for a POMDP [6]
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Role of the Value Function in Solving MDPs

Define the value function V π(s) as the expected discounted sum of
future rewards from starting in state s:

V π(s) = EPπ

[ ∞∑
t=0

γtr(st , at)
∣∣∣ s0 = s

]
.

By conditioning on the first observation-action step we get
V π = (I − γPπ)−1rπ – this is the Bellman equation

Given an initial state distribution ρ, we can find the optimal policy by
solving a linear program in terms of the value function V π [9]

Figure: Taken from [1]
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Geometry of the Value Function in MDPs

For FOMDPs, the space of value functions is a union of polytopes [1].
For POMDPs, the space of value functions is not a union of polytopes —
instead rational functions in policy entries [7]
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Interval Matrix Systems

Let [A] be a matrix of intervals, i.e., entries satisfy Aij ∈ [aij , aij ]).

Define Ac as the matrix of interval centers (i.e., entries
Ac
ij =

1
2(aij + aij)), and A∆ as the matrix of interval lengths.

Theorem (Oettli-Prager 1964) [10]: For an interval matrix [A] and
vector [b] with centers Ac , bc and lengths A∆, b∆, x satisfies Ax = b
for some A ∈ [A], b ∈ [b] iff

|Acx − bc | ≤ |A∆x |+ |b∆|.

Proof sketch of ⇒: Let there exist A ∈ [A], b ∈ [b] such that
Ax − b = 0. Then by triangle inequality we have

|Acx − bc | = |Acx − bc − (Ax − b)|
= |(Ac − A)x + (b − bc)| ≤ |A∆x |+ |b∆|
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Parametric Matrix Systems

More useful class of matrix systems to consider are parametric :
Consider a parameter space formed by a product of intervals,
[p] = ×K

k=1[pk , pk ], with pck = 1
2(pk + pk) and p∆k = 1

2(pk − pk)

Consider a parametrization of a family of matrices via
A(p) =

∑K
k=1 pkA

k , b(p) =
∑K

k=1 pkb
k for p ∈ [p].

Analog of the Oettli-Prager theorem gives only necessary condition,
which constructs a loose enclosure of the solution set: if x ∈ Σ, then

|A(pc)x − b(pc)| ≤
K∑

k=1

p∆k |Akx − bk |.

Theorem [5]: x ∈ Σ = {x ∈ Rn : A(p)x = b(p), p ∈ [p]} if and only
if for every y ∈ Rn we have

y⊤(A(pc)x − b(pc)) ≤
K∑

k=1

p∆k |y⊤(Akx − bk)|.
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Infinitely Many Linear Ineqs vs Finitely Many Poly. Ineqs

Σ = {(x , y) : x2 + y2 ≤ 1} = ∩θ∈[0,2π){(x , y) : x cos θ + y sin θ ≤ 1}
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Finite Characterization of Solutions to Parametric Systems

From above: if x solves A(p)x − b(p) = 0, then
|A(pc)x − b(pc)| ≤

∑K
k=1 p

∆
k |Akx − bk |

This implies x solves A(p)x − b(p) if and only if there exists
q = (q1, . . . , qK ), qi ∈ [−1, 1] such that

A(pc)x − b(pc) =
K∑

k=1

qkp
∆
k (Akx − bk). (1)

Let D be the matrix of deviations that appear on the RHS of above
equation, with the kth column of D given as

Dk(x) = p∆k (Akx − bk).

Let Rc be the vector of midpoint residuals that appear in the LHS:

Rc(x) = A(pc)x − b(pc).
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Finite Characterization of Solutions to Parametric Systems

Theorem

A vector x solves a parametric matrix system A(p)x − b(p) = 0 if and only
if there exist qk ∈ [−1, 1] such that

A(pc)x − b(pc) =
∑
k

qkp
∆
k (Akx − bk)

and
R⊥
c = (I − DD†)Rc = 0,

where D† is the pseudo-inverse of D.

In particular, we have two conditions involving Rc ,D:

1 Zonotope condition, which is a finite set of inequalities

2 Non-orthogonality condition, which is a finite set of polynomial
equations
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The Zonotope Condition

Recall that a zonotope Z (g1, . . . , gk) generated by vectors
(g1, . . . , gk) is defined as Z = {

∑
i=1 αigi : αi ∈ [−1, 1]}. They arise

from the Minkowski sum of line segments:
Z = [−1, 1]g1 + [−1, 1]g2 + · · ·+ [−1, 1]gk [4].
Here we need Rc to remain in the zonotope generated by the columns
of D, which correspond to possible directions of deviation away from
the solution set of the parametric system

Figure: From the Geometry Junkyard
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Polynomials from Non-Orthogonality Condition

Condition R⊥
c = 0 comes from the fact that if there exists

q ∈ [−1, 1]K with

A(pc)x − b(pc) =
K∑

k=1

qkp
∆
k (Akx − bk).

then Rc = A(pc)x − b(pc) must be in column space of
D = [D1| · · · |DK ],Dk = p∆k (Akx − bk).
Component of Rc orthogonal to colspace(D) must vanish.
Each element of R⊥

c can be written as polynomials in x

(R⊥
c )i = ((I − DDT )Rc)i = (Rc)i −

m∑
k

Dk,i ⟨Dk ,Rc⟩,

Dk,i = (A(pc)x − b(pc))i ,

⟨Dk ,Rc⟩ = p∆k

m∑
j=1

(Akx − bk)j(A(p
c)x − b(pc))j .
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Conditions on 2x2 Real Parametric Systems

Consider a 2× 2 real parametric system in 3 parameters, so that we have

A(p) = A0 + p1A
1 + p2A

2, b(p) = b0 + p1b
1 + p2b

2

For k = 0, 1, 2, let

Ak =

(
ak11 ak12

ak21 ak22

)
, bk =

(
bk1
bk2

)
, ∆k = p∆k .

For x = (x1, x2), define

Rc(x) = A0x − b0 =

(
r1(x)

r2(x)

)
=

(
a011x1 + a012x2 − b01

a021x1 + a022x2 − b02

)
.

Each column of D(x) ∈ R2×2 is

dk(x) = ∆k

(
Akx − bk

)
= ∆k

(
ak11x1 + ak12x2 − bk1

ak21x1 + ak22x2 − bk2

)
,

for k = 1, 2, so D(x) =
[
d1(x) d2(x)

]
.
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Conditions on 2x2 Real Parametric Systems 2

The condition (I − D D†)Rc = 0 is equivalent to the vanishing of the two
minors of

[
D | Rc

]
. Define

f1(x1, x2) = det

(
d1
1 (x) r1(x)

d1
2 (x) r2(x)

)
= d1

1 (x) r2(x)− d1
2 (x) r1(x),

f2(x1, x2) = det

(
d2
1 (x) r1(x)

d2
2 (x) r2(x)

)
= d2

1 (x) r2(x)− d2
2 (x) r1(x).

f1(x1, x2) = ∆1

[ (
a111x1 + a112x2 − b11

) (
a021x1 + a022x2 − b02

)
−
(
a121x1 + a122x2 − b12

) (
a011x1 + a012x2 − b01

)]
= 0,

f2(x1, x2) = ∆2

[ (
a211x1 + a212x2 − b21

) (
a021x1 + a022x2 − b02

)
−
(
a221x1 + a222x2 − b22

) (
a011x1 + a012x2 − b01

)]
= 0.
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Conditions on 2x2 Real Parametric Systems 3

Here we simulate A(p) = A0 + p1A
1 + p2A

2, b(p) = b0 + p1b
1 + p2b

2,
with all matrices drawn from N(0, 1)
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Translating Bellman Equation into Parametric System

Need to be careful about reparametrizing Bellman equation for MDPs
(V π = (I − γPπ)−1rπ) into a parametric system (A(p)x − b(p) = 0)

Want entries of policy π to be our parameters, but policy-weighted
transition matrix Pπ is row-stochastic, so there are dependencies
between parameter entries

Technical solve — take intersection of two hyperrectangle
parametrizations which together cut out the correct policy simplex —
see Appendix
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Infinitely Many Linear Inequalities for Value Functions

Theorem

Consider a (PO)MDP. Then x ∈ RS is a feasible value function, meaning
that it solves the Bellman equation (I − γPπ)x − rπ = 0 for some
π ∈ ∆O

A, if and only if it solves

y⊤(A(pc)x − b(pc)) ≤∑
(o,a)∈O×A

p∆(o,a)|y
⊤(A(o,a)x − b(o,a))|

y⊤(B(v c)x − c(v c)) ≤∑
(o,a)∈O×A\{ao}

v∆(o,a)|y
⊤(B(o,a)x − c(o,a))|

for every y ∈ Rn, where the matrices are defined in the technical sense
given above.
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Finitely Many Poly. Inequalities for Value Functions

Theorem

x ∈ RS is a feasible value function, meaning that it solves the Bellman
equation (I − γPπ)x − rπ = 0 for some π ∈ ∆O

A, if and only if

1 The zonotope condition is satisfied

2 The non-orthogonality condition is satisfied
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Example for 2x2 Real Parametric Systems

A0 =

[
−0.93 −2.19
0.01 0.37

]
,A1 =

[
−0.38 0.2
0.41 −0.16

]
,A2 =

[
−1.25 1.60
0.57 2.45

]
,

b0 =

[
0.58
1.44

]
, b1 =

[
−0.80
−0.87

]
, b2 =

[
−1.35
0.61

]
, p1, p2 ∈ [0, 1]
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Connecting POMDPs and Parametric Systems

To use the characterization above for solution sets of parametric systems,
we need a parametrization by a hyperrectangle. We can express our
parameter set ∆O

A as the intersection of two sets parametrized by
hyperrectangles, and infer a result by taking the intersection of the
solution sets.
First hyperrectangle:

A(p) = A0 +
∑
o,a

A(o,a)po,a, with

(A0)s,s′ = Is,s′ , (A
(o,a))s,s′ = −γα(s, a; s ′)β(s; o), (o, a) ∈ O ×A

b(p) = b0 +
∑
o,a

b(o,a)po,a, with

(b0)s = 0, (b(o,a))s = r(s; a)β(s; o), (o, a) ∈ O ×A,

with parameter p ∈ ∆O
A ⊆ RO×A.
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Connecting POMDPs and Parametric Systems 2

Second hyperrectangle: fix some ao ∈ A for each o ∈ O and take
∀(o, a) ∈ O ×A \ {ao}

B(v) = B0 +
∑

o,a ̸=ao

B(o,a)vo,a, with

(B0)s,s′ = (A0)s,s′ +
∑
o

(A(o,ao))s,s′ ,

(B(o,a))s,s′ = (A(o,a))s,s′ − (A(o,ao))s,s′ ,

and

c(v) = c0 +
∑

o,a ̸=ao

c(o,a)vo,a, with

(c0)s =
∑
o

(b(o,ao))s ,

(c(o,a))s = (b(o,a))s − (b(o,ao))s ,

with parameter v ∈ [0, 1]O×A\{ao}.
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