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Abstract

We present a description of Bayesian logistic regression and the application of
MCMC techniques to obtain estimates for parameters with intractable conditional dis-
tributions. We also describe a model for evaluating hitting performance in baseball
structured as a Bayesian logistic regression and provide an update on its predictions
for the 2019 season.

1 Introduction

In-game outcomes in Major League Baseball, the highest level of professional baseball

played in the US and Canada, seem prima facie to be simple things – a batter may suc-

ceed or fail to get on base in any at-bat, and runners may score at home plate. In fact, these

outcomes are complexly determined, none less so than the performance of the pitcher and

the impact he may have on in-game events.

In this paper, extending Jensen, McShane, and Wyner (2009), we seek to update their

estimates of hitter performance in a full season by predicting the number of home runs

made. We are also interested in estimating the transition probabilities of a hidden Markov

model categorizing hitters as either elite or non-elite.

2 Literature Review

The application of techniques for statistical estimation to baseball data is one of the oldest

stories in our field. When Joe DiMaggio was having his breakout seasons with the Yankees

in the mid-1930s, the legend goes that his father, a poor illiterate fisherman who cast off

from San Francisco’s Fisherman’s Wharf, taught himself division to follow his son’s batting

average.

Classically, batters were evaluated based on a few simple metrics, among which chiefly

their batting average. This figure, the number of hits divided by the number of at-bats,

varies across players in any given season between 0.150 and 0.400. Over an entire career,

achieving a 0.300 batting average is a remarkable feat.
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In the last quarter-century or so, commentators have invested energy into compiling

further metrics derived from the simple metrics. Bill James, the sportswriter and statisti-

cian who spearheaded much of this push, was essentially a nobody writing into the wind

all the way back in the 1970s. Then Aaron Sorkin wrote and Brad Pitt starred in a movie

about the early-aughts Oakland Athletics’ successful use of his philosophy, which privi-

leges metrics like on-base percentage and batting average on balls in play over hits, runs

and runs batted in.

Since then, the so-called sabermetrics community has come to dominate baseball dis-

course, seeking ever more accurate predictors of future success. The writer Dan Szym-

borski, who works at FanGraphs, is known for a model called ZiPS developed to assess

the future impact of players and thereby the teams they play on, out to time horizons

extending a decade or more.

Contemporaneously with Mr. James’ efforts, Efron and Morris (1975) used baseball

data to demonstrate the efficacy of shrinkage properties in the James-Stein estimator for

estimating a vector of MLEs with n > 3. Even more recently, Bayesian techniques have

come into vogue: Brown (2008) compared empirical Bayes methods including the James-

Stein estimator but also methods which did not require equal variance assumptions among

the players to estimate batter performance in the second half of a season given first half

data.

In Brown (2008) it is mentioned that private correspondence with S. Jensen suggests

that estimators could improve via adding another parameter for player position. Anec-

dotally, many baseball fans are aware of the fact that defensive contributions from an

excellent shortstop or catcher may outweigh mediocre hitting, while first basemen (and

especially designated hitters) who are expected to do very little fielding must be excellent

hitters to earn a spot on the roster. Jensen et al. (2009) performs exactly the extension noted

in the private correspondence between Jensen and Brown, estimating age, position, and

ballpark parameters to inform the posterior distribution of hitting performance. Since this

technique begins with a Bayesian logistic regression model, we walk through the regres-

sion model and the use of MCMC methods to simulate the posterior below.

3 Bayesian Logistic Regression via Gibbs Sampler

We follow Dogucu, Johnson, and Ott (2021) in the description of Bayesian logistic regres-

sion, and also build up the model for pitching performance by following the derivation.
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Let Yij be the season total home runs by hitter j in year i. Home runs are modeled

as binomial successes with the number of trials Nij being given by the number of at-bats

faced in a season, which we treat as exogenous, following Jensen et al. (2009). Then we

have

Yij ∼ Bin(nij , θij)

with E[Y[ij]|θij ] = Nijθij . Say we have player and year-level covariates X
(k)
ij . We use a

logit link function to represent the relationship between θij and covariates X
(k)
ij , and seek

to estimate coefficients via regression in the following equation:

log(
θij

1− θij
) = β0 +

∑
k

βkX
(k)
ij

In Jensen et al. (2009), the exact covariates specified are position αk, home ballpark βk,

and age, whereby they fit a smooth trajectory for each position using splines.

Now we know that in order to draw samples from the full posterior distribution, we

would need priors on βi, but these are intractable – they are just regression coefficients.

Therefore, we can use Metropolis-Hastings to generate proposals for βi and target the full

posterior which we know is binomial.

We follow the notes of James S Clark (2021) in describing the implementation of the

Gibbs sampler and M-H algorithm. We begin by setting non-informative priors for the βi,

and given a current β(m)
i propose a new β

(m+1)
i via sampling from a multivariate normal

distribution with mean equal to β
(m)
i and covariance matrix given by a small fraction of

the sample covariance matrix:

Σ̂(m+1) = γ ∗ 1

n
(XtX)−1

We accept the proposal according to ratio [β∗]
[β(m)]

, where [β] are our posterior distribu-

tions, given by

[β∗] = Πi=1Ber(yi|θi)N(β∗|βi)

and

[β∗] = Πi=1Ber(yi|θi)N(β(m)|βi)

We therefore can run M-H via the following algorithm

# a proposal

b_m+1 <- matrix( .rMVN(1, mu = b_m, sigma = gamma*(XˆtX)ˆ-1), ncol=1)
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# link to theta

theta_m+1 <- invlogit(x%*%b_m+1)

theta_m <- invlogit(x%*%b_m)

# log likelihood + log prior

pnew <- dbinom(y, n, theta_m+1, log = T) +

.dMVN(b_m+1, priorB, priorVB, log=T)

pnow <- dbinom(y, n, theta_m, log = T) +

.dMVN(b_m, priorB, priorVB, log=T)

# accept proposal with probability min(a, 1)

a <- exp( sum(pnew - pnow) )

if( a > runif(1,0,1)) b_m <- b_m+1

4 Applications to Analysis of Pitching Performance

Below we resummarize the model in Jensen et al. (2009) and update data through 2019

to track its accuracy. We also rewrite the model slightly to predict pitching performance

instead of batting performance. We thank the authors for providing their code base for our

uses.

In Jensen et al., the goal is to perform Bayesian logistic regression according to the

following equation

log(
θij

1− θij
= αk + βb + fk(Aij)

with the following parameters: α are position-specific intercepts, fk(Aij) is a spline-smoothed

function of player age which differs by position, and β are home ballpark effects.

We also include a hidden Markov model to account for differences in player ability at

the position level. That is, we define a latent variable Eij in each player-year and split αk

according to the value of Eij . This setup allows for players to move in and out of elite

status over the course of their career.

Our parameters have the following prior distributions: βb ∼ N(0, τ2), γkl ∼ N(0, τ2), αk =

(αk0, αk1) ∼ MVN(0, τ2I2)1(αk0 < αk1). We also need to provide priors on the transition

probabilities for Eij , ν00k, ν01k, ν10k, ν11k ∼ Dirichlet(1, 1).
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Then our posterior is given by

p(α, β, γ, ν, E|X) ∝ Πi,jp(Yij |Nijθij)∗p(θij |Rij , Bij , Aij , Eij , α, β, γ)∗p(Eij |Ei,j−1, ν)∗p(α, β, γ, ν),

where we recall that Rij is player-year position, Bij is player-year home ballpark, Aij is

player-year age, and Eij is player-year elite status.

Finally, we update these parameters via a Gibbs sampler:

p(α|β, γ, ν, E,X) = p(α|β, γ, E,X)

p(β|α, γ, ν, E,X) = p(β|α, γ,E,X)

p(γ|α, β, ν, E,X) = p(γ|α, β,E,X)

p(ν|α, γ, β,E,X) = p(ν|E)

p(E|α, β, γ, ν, E,X)

Note that there is nothing in the above setup that constrains this model to predicting

only batting performance, save for the fact that there will be less variance coming through

the position parameters due to there being fewer pitcher positions.

We show below results from updating Jensen et al.’s model for the period 2010-2018 in

order to predict 2018. Breaking down the predicted elite transition probabilities by position

reveals in 1 that first basemen are most likely to become elite when non-elite.

Visualizations of draws from the parameter posteriors are instructive: 2 demonstrates

clearly that elite status is important for predicting home run rate.

Finally, we can visualize the output – draws from the posterior of home run totals for

selected players. 3 shows that Jorge Alfaro, at that time a catcher for the Miami Marlins,

was predicted not to exceed 25 homers, while Jose Abreu, then a first baseman for the

Chicago White Sox, had a chance at hitting 50.

We assess the efficacy of this model through computing the RMSE of predicted home

run totals vs actual home run totals. For 2019 data predicted by training the model on

2010-2018 data, we get an RMSE of 10.49. State-of-the-art models cited in Jensen et al.

(2009) were able to achieve RMSEs closer to 7 with a bevy of additional specifications, so

this relatively parsimonious model performs not too shabbily.

4 displays prediction accuracy relative to the 45-degree line. Commentary in Jensen

et al. (2009) notes that all hitting models perform worse on predictions of young players

than old, and so here we denote by color an age split. Indeed, the model does seem to
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underestimate young hitters’ abilities.

5 Discussion

In this paper, we have reviewed preliminaries for using Bayesian logistic regression to es-

timate a model requiring a link function between observations and parameters. We more-

over described the simulation of results from the posterior of both parameter and outcome

distributions. We moreover updated Jensen et al. (2009), describing the mechanics of their

model, and some limitations of latent-variable approaches.

In further work, we would like to see extensions to pitching performance – how do

elite/non-elite transition probabilities look for pitching? How does home ballpark affect

ability to get strikeouts?

Lastly, it would be useful to see if changes in rules in the intervening period since

Jensen et al. wrote their paper influence the construction of the model. In particular, both

the American and National Leagues use a designated hitter. Rules changes before the 2023

season were designed to reduce the ability of outfielders to play wherever in the field they

desired, potentially increasing the number of home runs via fewer outfield saves. And

anecdotal evidence suggests home ballpark effects may be changing – in the 2019 World

Series, neither the eventual champion, the Washington Nationals, nor their opponent, the

Houston Astros, won any of the games played at their home ballparks!
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Figure 1: Draws from the posterior distribution of ν00k for predicting the 2019 season
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Figure 2: Draws from the posterior distribution of Eij for predicting the 2019 season

Figure 3: Draws from the posterior distribution of home run total for predicting the 2019
season
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Figure 4: Predicted vs Actual HR Count by Age
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