STAT 201B Final Project: The .632 Bootstrap Estimator

Ryan Anderson
raandersonlg.ucla.edu

March 18, 2023

Abstract

The .632 bootstrap is a nonparametrically improved estimator for prediction error.
It is a shrinkage estimator formed by a convex combination of two more basic esti-
mators for prediction error: the apparent error estimator and the bootstrap-smoothed
leave-one-out cross-validation error. We provide theoretical considerations as to the
utility of this estimator and provide simulated results as a demonstration of its effi-
cacy.

1 Introduction

The .632 bootstrap is a nonparametrically improved estimator for prediction error. It is
a shrinkage estimator formed by a convex combination of two more basic estimators for
prediction error: the apparent error estimator and the bootstrap-smoothed leave-one-out
cross-validation error.

The need for such estimators arises naturally in classification and regression prob-
lems. A typical setup is as follows: given (X,y) covariates and outcomes data, we form
a prediction rule r(x;). With a loss function L(y;, (z;)), we consider the apparent error,
err = % > L(y;,r(x;)). This could also be simply described as the training error, where
the training error is taken to be our entire dataset.

Now let F; be the empirical distribution of the X; with row i deleted, and consider boot-
strap estimates x* taken from this distribution. Then the leave one out bootstrap estimator
is given by Err' = + > Ep,L(y;, r(z*)).

With these two in mind, the .632 estimator can be stated simply as Err®? = 0.368 «
err + 0.632 % Errl.

This basic reason for the improvement gained here is twofold: the first is that the
bootstrap-smoothed leave-one-out cross-validation estimator can smooth the discontinu-
ities of simple cross-validation, and thus lead to lower variance than the cross-validation
estimator. The second, however, is that this variance-reduction smoothing leads to an up-
ward bias in the estimator.

More details, including theoretical justifications for the sources of bias, are provided in

the notes below.

mailto:raanderson@g.ucla.edu

2 Literature Review

Fleshing out the theory of estimating prediction error was a major research project of schol-
ars like Efron, Tibshirani, Gong, Breiman, Mallows, and Wahba beginning in the mid-
1970s. The essential problem of using the training error as an estimate for the prediction
error was obvious early on — because the same data is being used to train and test the pre-
diction rule, the apparent error incurs the covariance penalty, and thus underestimates the
prediction error: E[Err;] = Elerr;| + 2 % cov(fii, ¥;)-

Mallows (1973) introduced the C), estimate which recognized and corrected for this —
later improvements would include Stein’s unbiased risk estimator and formulas involving
Akaike’s information criterion, albeit parametrically.

By contrast, Efron| (1983) compares different nonparametric improvements upon the
apparent error. This would be followed up by Efron and Tibshirani (1997) where a fuller
theory of comparison among estimators is developed. Somewhat humorously, Efron notes
in the 1983 paper that the although the .632 estimator performs best among the estimators
surveyed, the theoretical justification for it is weak, “leaving open the possibility that the
estimator’s success...was a fluke”. The theoretical justification provided in that paper,
despite the author’s low opinion, has some attractiveness, and so will be resummarized

here.

3 Theoretical Notes

Parametrically, we saw above that under the assumed distribution of the outcome variable
y ~ F(u,ol), with i = (X1 X)71X7TY, the apparent error understates the prediction error
by 2% cov(fi;, yi). A non-parametric explanation can instead be given by thinking about the
space of covariate vectors as a sort of metric space.

Compare the training dataset X (in the case of the apparent error taken to be the full X
with no cross-validation) to a new data point xy. We assume that prediction error increases
as the distance between z(and the closest point in X to z(grows. Therefore, for any data
point not contained inside the training set, the apparent error will underestimate the true
€error.

Nonparametric improvements need to “spread out” the training data over the covari-
ate space in order to get rid of the downward bias. Leave-one-out cross-validation does

this correctly, but at a cost of high variance. Adding a bootstrap, however, smooths out the

variance while retaining the benefit of small bias. This bootstrapped-smoothed version of
the CV estimator turns out to in fact have an upward bias. The source of this upward bias
lies in the fact that at each bootstrapped CV step we are using only a proportion of the
sample.

In order for the apparent error calculation to be unbiased, we need for the distance
between the test data point x¢ and the training dataset X to be zero - the probability of
that is P(6(z9,X) = 0). Given a empirical distribution produced by the bootstrap, we
can calculate this probability as the chance of not being included in any of the bootstrap
samples: P(d(z, X*) =0)=1—(1—)" ~1 -1 =0.632 for n large enough.

If we assume that the true prediction error Err is the same under no cross validation
(err) and under bootstrap-smoothed cross-validation (Errt), and furthermore that the true
error is a linear function of distance from a test point to the training dataset, Err = v+ A,
then we end up with a relation that Err = 0.318 * err 4+ 0.632 Err!, which we estimate

as Err %% = 0.318 err + 0.632 % Err

4 Results

We use for our simulated example the *spam* data from Efron and Hastie (n.d.), which
consists of 56 covariates on 4,600 emails and an outcome variable labeled SPAM, which
labels an email as either spam or genuine. We use regression trees via the R package
rpart to classify emails as spam or not.

We compare the performance of two estimators of prediction error for the classification
problem: one is our bootstrapped-smooth estimator and the other is the naive LOOCV
estimate, which performs leave-one-out cross-validation to predict the label of the out of
sample. [Efron (1983) also compared both and found the 632 estimator to always outper-
form.

Our loss function is 0-1 loss. We perform 100, 200, 300, 400, 500, and 1000 bootstrap
iterations for the 632 estimator. Our data is subsetted on each run to take 20 rows at ran-
dom with replacement from the *spam* data — this is similar to the scale of the data used
by [Efron (1983). It is notable that the 632 estimator is so computationally complex that
retaining the full data set was infeasible on a modern Macbook.

The results are displayed in the figure and table below — the 632 estimator outperforms
the naive LOOCYV estimator in terms of MSE at all iterations, and, as expected, improves

as the bootstrap depth increases.

References

Efron, B. (1983, June). Estimating the Error Rate of a Prediction Rule: Improvement on
Cross-Validation. Journal of the American Statistical Association, 78(382), 316-331. Re-
trieved 2023-03-18, from http://www.tandfonline.com/doi/abs/10.1080/
01621459.1983.10477973 doi: 10.1080/01621459.1983.10477973

Efron, B., & Gong, G. (1983, February). A Leisurely Look at the Bootstrap, the Jack-
knife, and Cross-Validation. The American Statistician, 37(1), 36. Retrieved 2023-03-
18, fromhttps://www. jstor.org/stable/2685844?0origin=crossref doi:
10.2307 /2685844

Efron, B., & Hastie, T. (n.d.). Computer Age Statistical Inference.

Efron, B., & Tibshirani, R. (1997, June). Improvements on Cross-Validation:
The 632+ Bootstrap Method. Journal of the American Statistical Associa-
tion, 92(438), 548-560. Retrieved 2023-03-15, from https://doi.org/10
.1080/01621459.1997.10474007 (Publisher: Taylor & Francis _eprint:
https:/ /doi.org/10.1080/01621459.1997.10474007) doi: 10.1080/01621459.1997
.10474007

Mallows, C. L. (1973, November). Some Comments on C P. Technometrics, 15(4),
661. Retrieved 2023-03-18, from https://www. jstor.org/stable/1267380
?origin=crossref doi: 10.2307/1267380

http://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10477973
http://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10477973
https://www.jstor.org/stable/2685844?origin=crossref
https://doi.org/10.1080/01621459.1997.10474007
https://doi.org/10.1080/01621459.1997.10474007
https://www.jstor.org/stable/1267380?origin=crossref
https://www.jstor.org/stable/1267380?origin=crossref

Table 1: Results from simulation of spam data

Bootstrap Iterations 632 Ests CV Ests
1 100.00 0.46 0.55
2 200.00 0.24 0.50
3 300.00 0.16 0.35
4 400.00 0.26 0.55
5 500.00 0.27 0.45
6 1000.00 0.22 0.50

MSE for Estimators of Prediction Error

< |

- — CV Estimator
—— 632 Estimator

[= o]

©

w

© -

0.2
|

/

\

0.0

/?

200 400

Bootstrap lterations

600

800 1000

Figure 1: Results from comparison simulation of spam data

library (MASS)
library (lattice)
library (caret)
library (boot)
library (rpart)

library (xtable)

spam_data <- read.csv("/Users/ryananderson/Documents/STAT 201B HW/Final Project

length (spam_datall,])
B <- 1000

trunc_spam_data <- spam_data[sample (1l:length (spam_data$spam), 25, replace=FALSE),

covars_spam_data <- trunc_spam_data %>% subset (select=-spam)
a <- l:length(trunc_spam_data$spam)
boot_errors <- rep (0, length (trunc_spam_data$spam))
in_boot_count <- rep(0,length (trunc_spam_data$spam))
for(i in l:length(trunc_spam_data$spam)) {
for(j in 1:B){
Pull bootstrap indices and not in bootstrap indices
boot_indices <- sample (a,replace=TRUE)
if(!'i %in% boot_indices){ next }
Form new train data matrix from bootstrap indices
new_mat <- trunc_spam_data[boot_indices,]
Generate glm
boot_glm <- rpart (spam ~ ., data=new_mat)
Find ith error in this boot run and add to total error for this index
boot_err <- ifelse(trunc_spam_dataSspam[i] == predict (boot_glm, covars_spam
boot_errors[i] <- boot_errors[i] + boot_err

in_boot_count[i] <- in_boot_count[i] + 1

}

loobs_err <- sum(boot_errors)/sum(in_boot_count)

apparent_model <- rpart(spam ~ ., data=trunc_spam_data)
apparent_error <- predict (apparent_model, covars_spam_data)
apparent_error_walled <- ifelse (apparent_error <= 0.5,0,1)

apparent_error_total <- (1 / length (apparent_error)) * (sum(ifelse (trunc_spam_c

est_632_err <- 0.632 x loobs_err + 0.328 x apparent_error_total

LOO_errors <— c()

for(i in l:length(trunc_spam_data$spam)) {
LOO_covars <- trunc_spam_datal[-1i,]
LOO_y <- trunc_spam_data$Sspam[i]
LOO_model <- rpart (spam”.,data=LO0_covars)

LOO_predict <- predict (LOO_model, trunc_spam_datali,])

LOO_predict_barrier <- ifelse (LOO_predict < 0.5,0,1)
LOO_errors[i] <- ifelse(LOO_y == LOO_predict_barrier,0,1)
}

cv_est_err <- (1 / length(trunc_spam_data$Sspam)) * sum(LOO_errors) + apparent_ce

	Introduction
	Literature Review
	Theoretical Notes
	Results

