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Abstract

Major progress on the matrix completion problem was achieved via incorporating
approaches from statistics and convex optimization. We describe the surge of interest
in this problem and how that led to rapid advances in both theory and implementation.

1 Introduction

Consider a situation in which we have a sparse matrix, usually broad and sparse so that

A ∈ Rmxn has n > m, but not necessarily. Our goal is to estimate non-zero values to “fill”

the matrix.

This problem arose naturally in the course of constructing “recommender engines” for

products like Netflix, in which very many users are to be recommended movies based on a

very limited history of movies watched and rated. For this reason, most discussions of the

matrix competition problem make reference to the “Netflix problem,” although it could

also have just as easily been the “Yelp problem” or “Spotify problem”.

The naming may be more apposite than seems at first glance – coincident with the

growth of Netflix and similar services there appeared the first paper to stoke major interest

in novel solutions to the problem, Candes and Recht (2008)

Theoretical and algorithmic progress on the matrix problem has progressed rapidly, as

will be discussed further below.

2 Literature Review & Theoretical Notes

Candes and Recht (2008) kickstarted contemporary interest in finding solutions to the ma-

trix completion problem. Much in that paper was developed by analogy with concepts

from electrical engineering and signal processing, where Candes was active in the litera-

ture before. The initial situation in that paper is motivated by the idea of only having a

sample of a larger matrix available, and poses the question of under which circumstances

the full matrix can be recovered.

1

mailto:raanderson@g.ucla.edu


Central to the matrix completion problem is the idea that the matrices involved are low-

rank – in Netflix terms, this is the idea that user ratings can be determined by variables like

genre, cast, year of release. The low rank assumption reduces the degrees of freedom in

the matrix from O(mn) to (m+n-r)r. With this in mind, the matrix completion problem is

simple to state as an optimization problem: given an incomplete matrix A ∈ Rmxn, we

seek a matrix in Rmxn with minimal rank that agrees on non-zero values of A.

Candes and Recht (2008) note that rank minimization is NP-hard, and so instead cast

the problem in terms of minimizing the sum of the singular values of a matrix which agrees

on the non-zero values of A. These are equivalent problems since the sum of the singular

values of a matrix is always equivalent to its norm; because the sum of the singular values

is also known as the nuclear norm of a matrix, this is referred to as nuclear norm opti-

mization. This problem, which is convex as it is merely optimizing a norm over a space of

matrices, is given below:

min
X∈Rmxn

∥X∥∗ s.t. Xij = Aij

However, it turns out that the low rank property is not sufficient, as there exists matrices

like
( 0 0 1
0 0 0
0 0 0

)
that are rank 1, but very difficult to recover without seeing a large number of

samples. To solve this, Candes and Recht (2008) introduced the notion of coherence, which

was lifted directly from signal processing.

It is motivated by the idea that the sparse matrix we use as a starting off point can be

seen as the output of a sampling operator on the full matrix we wish to recover. If we

assume this sampling operator acted roughly uniformly, then sparse matrices with “con-

centrated” singular vectors will perform poorly at recovering the full matrices they were

sampled from. A matrix whose column space is low coherence does not have concentrated

singular vectors - instead it “spreads its energy” over the ambient space the column space

lives in.

Formally, the coherence µ(U) of a subspace U ∈ Rn vis-a-vis the standard basis ei is

given by

µ(U) =
n1

r
max

i∈1,...,n1

∥PO(U)ei∥22

Low coherence matrices are exactly those which can be recovered via nuclear norm min-

imization. In particular, their main result establishes that for sufficiently low coherence

and sufficiently low rank matrices, the amount of retained data required to recover the full

matrix uniquely and exactly is n1.2log(n).

Developments in the theory after Candes and Recht (2008) have focused on improv-
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ing that bound on the number of samples required for exactness. Candes and Tao (2009)

showed the bound could be pushed to essentially nlog(n) (where for M ∈ Rn1xn2 , n =

max(n1, n2)) and noted that “exact recovery by nuclear norm minimization occurs nearly

as soon as it is information-theoretically possible”. Recht (2009) uses a strictly probabilistic

argument to put a very low upper bound on the amount of samples needed to recover

exactly, pushing it all the way down to 32(n1 + n2)log2(n2).

A remarkable recent step forward in this literature was taken by Bertsimas et al, who

introduced the use of the matrix perspective trick in order to get past coherence. They start

with a very general problem:

min
X∈Sn

+

⟨C,X⟩+Ω(X) + µ ∗Rank(X) s.t. ⟨Ai, X⟩ = bi, X ∈ K,Rank(X) ≤ k

One instantiation of this is our familiar least squares regression, albeit with a Frobenius

regularizer and low rank constraint on the beta vector.

min
β∈Rpxn

1

2m
∥Y −Xβ∥2F +

1

2γ
∥β∥2F + µ ∗Rank(β)

This could be solved by replacing the Rank(X) term with the nuclear norm as specified

above, but Bertsimas points out that this requires low coherence, which is a strong con-

straint. Instead, they claim to be able to solve this problem via the matrix perspective trick

without coherence.

3 Algorithmic Notes

Candes and Recht (2008) provided numerical results by setting up the nuclear norm min-

imization program as a semi-definite problem and then using a standard SDP solver,

SDPT3. Tutuncu, Toh, and Todd (n.d.) describe the SDPT3 algorithm: the solver uses an in-

terior point method, which involves converting a generally convex problem into one with

equality constraints only, then applying gradient descent with a Newton step.

Keshavan, Montanari, and Oh (2009) describe what they call spectral matrix completion, a

different algorithm for matrix completion, and prove that this method can obtain arbitrary

mean square error. Their required number of samples for exact convergence is ∼ nlog(n).

Spectral matrix completion gets its power from taking an SVD of the sparse matrix

and then proceeding to throw out even more information if the number of samples is too

high for the algorithm to handle. This second sparsification is referred to by the authors
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as trimming. What’s surprising is that getting rid of data can help the algorithm converge -

in fact, this effect can be explained by the same notion of coherence introduced by Candes

and Recht (2008).

After taking the SVD and trimming, the resultant matrix is low-dimensional and thus

admits easy optimization through standard methods: Keshavan recommends gradient de-

scent with line search.

Xu, Yin, Wen, and Zhang (2012) describes an ADMM approach to solving the matrix

completion problem. They pose and provide an algorithm for solving the below problem:

min
(U,V,W,X,Y,Z)

1

2
∥XY − Z∥2F s.t. X = U, Y = V,U ≥ 0, V ≥ 0, Zij = Mij

Because any rank q matrix M ∈ Rmxn can be decomposed into factors X ∈ Rmxq, Y ∈

Rqxn, we can recover the full matrix as just M = XY . The update steps are given as:

Xk+1 = argminLA(X,Yk, Zk, Uk, Vk,Λk,Πk) = (ZkY
T
k + αUk − Λk)(YkY

T
k + αI)−1

Yk+1 = argminLA(Xk+1, Y, Zk, Uk, Vk,Λk,Πk) = (Xk+1X
T
k+1 + βI)−1(XT

k+1Zk + βVk −Πk)

Zk+1 = arg min
Zij=Mij

LA(Xk+1, Yk+1, Z, Uk, Vk,Λk,Πk) = Xk+1Yk+1 + (M −Xk+1Yk+1)0

Uk+1 = argmin
U≥0

LA(Xk+1, Yk+1, Zk+1, U, Vk,Λk,Πk) = S0(Xk+1 + Λk/a)

Vk+1 = argmin
V≥0

LA(X,Yk, Zk, Uk, Vk,Λk,Πk) = S0(Yk+1 +Πk/β)

Λk+1 = Λk + γα(Xk+1 − Uk+1)

Πk+1 = Πk + γβ(Yk+1 − Vk+1),

where (M − Xk+1Yk+1)0 censors the data in the updated matrices to have the same

sparsity as the input matrix and S0 thresholds elementwise at 0. We stop at ∥(XkYk −

A)∥F /∥A∥F ≤ tol.

4 Simulation and Discussion

We demonstrate the efficacy of Xu et al’s ADMM approach. We generate a low-rank ma-

trix via first taking the QR decomposition of an appropriately sized random matrix, then

providing 0.2n singular values distributed Gaussian. Our low rank matrix is then QΣR.

We censor this matrix with a matrix taking binary values, 75% of which are 1s. We then

implement the above algorithm, with stopping tolerance 10−4.
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Unfortunately, our simulation failed to converge in any reasonable amount of time.

You can see an attempt and the convergence of the error in Figure 1. In lieu of a discussion

of those results we review the simulation results in Xu et al.

Compared to other top of the line algorithms, the ADMM algorithm was better at re-

covering original image data when the input data was extremely sparse, only about 10%

of samples available. This is demonstrated in Figure 2.
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Figure 1: Attempt at simulation
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Figure 2: Image data recovery from Xu et al.

neg_threshold <- function(x){ max(x,0) }

a <- qr(matrix(rnorm(10000),ncol=100,nrow=100))

sing_values_vec <- sort(c(abs(rnorm(20,5,10)),rep(0,80)),decreasing=TRUE)

sing_values <- diag(sing_values_vec)

M <- qr.Q(a) %*% sing_values %*% qr.R(a)

B <- matrix(rbinom(10000,1,0.25),100,100)
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A <- M * B

q <- 1

maxiter <- 1000

tol <- 10e-2

alpha <- 1e6

gamma <- 1.618

beta <- alpha/100

Y <- matrix(abs(rnorm(10000,0,1)),nrow=20,ncol=100)

Z <- A

U <- matrix(0,nrow=100,ncol=20)

V <- matrix(0,nrow=20,ncol=100)

LambMat <- matrix(0,nrow=100,ncol=20)

PiMat <- matrix(0,nrow=20,ncol=100)

IdMatY <- diag(20)

IdMatX <- diag(100)

results <- c()

iter <- 0

while(TRUE){

X <- (Z %*% t(Y) + alpha*U - LambMat) %*% solve(Y %*% t(Y) + alpha*IdMatY)

Y <- (t(X) %*% Z + beta*V - PiMat) %*% solve(X %*% t(X) + beta*IdMatX)

Z <- X %*% Y + B*(M - (X %*% Y))

U <- apply(X + (1/alpha)*LambMat, c(1,2), neg_threshold)

V <- apply(Y + (1/beta)*PiMat, c(1,2), neg_threshold)

LambMat <- LambMat + gamma*alpha*(X - U)

PiMat <- PiMat + gamma*beta*(Y - V)

results <- c(results,norm(B*(X %*% Y - A),type=’F’)/norm(B*A,type=’F’))

if(norm(B*(X %*% Y - A),type=’F’)/norm(B*A,type=’F’) <= tol){ break }

print(norm(B*(X %*% Y - A),type=’F’)/norm(B*A,type=’F’))

iter <- iter+1

}

plot(1:iter,results,main=’Attempted Convergence of ADMM Matrix Completion Algo’,xlab=’iter’,ylab=’error’)
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