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Abstract

This paper aims to summarize and clarify the results from (Yang & Tokdar, 2015)
which derives the minimax L2 risk for high dimensional non-parametric regression
under generalized sparsity assumptions. Yang and Tokdar also show that the sum of
selectively rescaled Gaussian processes can achieve minimax contraction rates up to
log n terms when used as a prior for Gaussian process regression.

1 Introduction

One goal of high dimensional statistics is to understand the estimation of nonparametric
regression models

Y = µ+ f(X1, ..., Xp) + ϵ, ϵ ∼ N(0, σ2), (1)

where minimal assumptions are made on f . In practical settings, the true relationship
between Y and its predictors is highly nonlinear and involves interactions between the
predictor variables. A known result is that if the only assumption made about target func-
tion f is that f is differentiable with smoothness α > 0, then the associated minimax rate is
n−α/(2α+p) (Stone, 1982). This rate is extremely slow when p is much larger than n such is
in most modern high dimensional application. In order to make estimation practical, often
sparsity assumptions are made:

M1 : f can depend on all X = (X1, ..., Xp), but X itself lies in a low dimensional

manifold Md.

M2 : f depends on a subset of d predictors with d ≤ min(n, p).
M3 : f depends on d ≍ min(nγ , p) variables for some γ ∈ (0, 1) but admits an additive structure

f =

k∑
s=1

fs, where each component function fs depends on a small ds number of predictors.

(Yang & Tokdar, 2015) propose M3 as a generalization of both the M2 assumption (i.e.
k = 1) as well as the assumption that f is the sum of d univariate functions such as in the
case of linear regression (i.e. ds = 1). These sparsity assumptions on f allow the quality of
estimation to be quantified through calculating the minimax risk defined as

r2n(Σ, Q, µ, σ)− inf
f̂∈An

sup
f∈Σ

Ef,Q[||f̂ − f ||2Q] (2)

where Σ is the class of functions f belongs to, and Q is some compactly supported proba-
bility measure on Rp. An is the space of all measurable functions of data to L2(Q) where
L2(Q) is the linear space of real valued functions on Rp equipped with the norm induced
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by ⟨f, g⟩Q =
∫
f(x)g(x)Q(dx). The minimax rate is obtained by treating the minimax risk

as a function of the number of observations n as n increases.
Under M3, each additive component fs belongs to the class of centered functions

that are α-Hölder smooth on [0, 1]d and bound by λ in Banach space which we denote
Σp
s(λs, αs, ds). The space of functions f belongs to is an additive convolution of multiple

Σp
s(λs, αs, ds) denoted as Σp,k,d̄

A (λ, α, d) where d̄ is the maximum number of fs that depend
on each Xi.

One final assumption is required to achieve an upper and lower bound on the minimax
rate.

Assumption Q : Q admits a probability density function q on [0, 1]p such that
q̄ := sup

x
q(x) < ∞ and inf

x∈[1/2−∆,1/2+∆]p
> 0 for some ∆ ∈ (0, 1/2].

The lower bound on q for some sub-hypercube ensures that X can’t be reduced to a lower
dimension without some loss of information such as in M1 assumption. This assumption
allows a sharp upper and lower bound to be derived.

2 Bounding the Minimax Risk of Non-Parametric Estimation of
Different Function Classes

The natural progression of research in minimax risk calculation gradually relaxes the set
of assumptions placed on the target function f∗ we are attempting to estimate.

As a starting point, consider the rather strong assumption that the domain of f∗ is
a manifold X in a low-dimensional space, leading to results from low-rank estimation.
Problems like this can be solved with methods like SVD, dyadic decision trees, or nearest
neighbor estimation. This is the result for the M1 class of functions defined above.

For the M2 class, we relax our assumptions by instead imposing sparsity on the input,
allowing f to depend only on a subset of d predictors, with d ≤ min(n, p). This is the
realm of sparse linear regression, and so we can bend the distinction between parametric
and nonparametric estimation a bit in order to follow the usual argument summarized in
works like Wainwright (2019). With a convex relaxation of the ℓ0 constraint and then by
guaranteeing that the design matrix satisfies the restricted eigenvalue condition, we obtain
the following:

Theorem 1 Consider the Lagrangian lasso with a strictly positive regularization parameter λn ≥
2∥Xtw

n ∥∞. Then

• Any optimal solution θ̂ satisfies the bound

∥X(θ̂ − θ∗)∥22
n

≤ 12∥θ∗∥1λn

• If θ∗ is supported on a subset S of cardinality d, and the design matrix satisfies the (κ, 3)-RE
condition over S, then any optimal solution satisfies the bound

∥X(θ̂ − θ∗)∥22
n

≤ 9

κ
sλ2

n

It turns out that one such possible regularization parameter is λn = 2Cσ(

√
2 log(d)

n + δ)

is valid, meaning that the minimax rate decays as d log(p)/n, where d is the degree of
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sparsity.
The preceding arguments introduce us to how we might approach estimation of the

minimax risk for functions in M3. Raskutti, Wainwright, and Yu (2011) analyzes a re-
stricted form of M3, one wherein all functions are univariate with equal sparsities. They
find that for α-smooth functions, the minimax rate decays as

kn−2α/(2α+1) +
k log(p)

n

This is a helpful form for understanding how the minimax rate evolves - for M3 func-
tions, it is composed of the M2-like risk of estimating each of the functions and another
term called the variable selection uncertainty. The latter of these can be analogized to the
parametric lasso minimax rate obtained above.

Yang and Tokdar (2015) extend the result of Raskutti et al. (2011) to obtain the below
result, which characterizes minimax rates for both M2 and M3.

Theorem 2 Yang & Tokdar 3.1: Under Assumption Q, there exist N0 ∈ N, 0 < C < 1 < C̄
depending only on d̄,maxs ds,mins αs,maxs αs,mins λs,maxs λs such that for all n < N0,

Cϵ2n ≤ r2n(Σ
p,k,d̄
A (λ, α, d), Q, µ, σ) ≤ C̄ϵ̄2n

where

ϵ2n =
k∑

s=1

λ2
s(

√
nλs

σ
)−4αs/(2αs+ds) +

σ2
∑

s ds
n

log
p∑
s ds

and

ϵ̄2n =
k∑

s=1

λ2
s(

√
nλs

σ
)−4αs/(2αs+ds) +

σ2
∑

s ds
n

log
p

mins ds

As noted above, Theorem 3.1 characterizes both M2 and M3 minimax rates. If we let
k, d̄ = 1 in the above, then we obtain

r2n(Σ
p
S(λ, α, d), Q, µ, σ) ≍ λ2(

λ
√
n

σ
)−4α/(2α+d) +

σ2d

n
log(

p

d
)

We can use the structure of Theorem 3.1 to do some rudimentary analysis of problems
relating to the minimax risk of any given model. In the result just given for M2 functions,
we need each of the terms to remain small to control the minimax rate. For the second term,
the variable selection uncertainty, that roughly corresponds to having log(p) ≍ nβ, β ∈
(0, 1). The first term is the risk of estimating one α-smooth function in d variables, and
we can see that given a fixed α, this term is small as long as d ≈ o(n) ≈ o(log(log(n))).
This yields the very digestible intuition that meaningful learning in the M2 class is only
possible when the number of really important predictors is much smaller than the total
predictor count.

Moreover, we note that modeling a given problem as belonging to M3 allows us to
have much worse variable structure and still get good error bounds.

Let each component fs of f̂ have the same dimension, smoothness, and magnitude, all
of which not depending on k, n – this is a mild generalization of the conditions in Raskutti
et al. (2011). Then our minimax rate is r2n ≍ kn−2α/(2α+d) + kd log(pd). This implies that so
long as k ≈ o(min(n−2α/(2α+d), log(pd))) we are still well controlled. This means that the
total number of predictors kd can be on the order of log(p), an exponential improvement
over M2 modeling.
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3 Adaptive Near Minimax Optimal Contraction Rate of Bayesian
Additive Gaussian Process Regression

A Gaussian process in a stochastic process such that the value of the process at any finite
subset of points on its domain is jointly Gaussian, or equivalently, any finite dimensional
marginal of the stochastic process is multivariate normal. Another characterization is that
a Gaussian process W is a random element of the supremum norm Banach space of con-
tinuous functions over some domain such that any linear functional of the sample is Gaus-
sian. A Gaussian process is uniquely defined by its mean f and covariance Θ where Θ is a
kernel that satisfies Θ(x, x′) = E[(Wx − f(x))(W ′

x − f(x′)].
Standard Gaussian process regression involves defining a Gaussian process as a prior

over smooth functions and using the observed data to obtain a posterior distribution. A
popular convention is to let the mean of the prior be f(x) = 0 and let the covariance be
CSE(x, x′) = exp(−||x − x′||2). A known result for Gaussian process regression is that if
the prior W = GP (0, CSE) is rescaled such that the rescaled process WA = (WAx : x ∈ X )
and Ap follows a gamma distribution then the resulting posterior distribution contracts to
the true value f at the minimax rate of n−α/(2α+p) up to a factor of log n (van der Vaart &
van Zanten, 2009).

(Yang & Tokdar, 2015) extend the rescaled Gaussian process method to a method called
add-GP where the prior on f is defined by

f = L1W
A1,B1
1 + ...+ LKWAK ,BK

K ; K ∼ π,

Ws
iid∼ GP (0, CSE), L

iid∼ h,

Bs
iid∼ [

p⊗
j=1

Be(1/p)]||B|≤D0
, A|Bs|

s |Bs
iid∼ Ga(a1, a2)

(3)

where W ∈ C(Rp), π is a probability distribution over N, h is a density on (0,∞), and
a1, a2, and D0 are positive hyperparameters. Obtaining a prior of Y also requires µ to be
distributed as a Gaussian random variable, and σ to have positive density onR+.

The add-GP prior is analogous to a prior over sparse functions under M3 assump-
tions. Bs controls which predictors each additive component depends on, and the hyper-
parameter D0 ensures that there exists some positive integer d̄ such that at most d̄ additive
components can depend on any predictor.

(Yang & Tokdar, 2015) define the contraction rate of the posterior distribution as ϵn if

Pn(||µ+ f − µ∗ − f∗||n + |σ − σ∗| ≥ Mϵn|{(xi, Y i)}ni=1) → 0

as n → ∞ for some constant M , and ||f ||2n = 1
n

∑n
i=1 f(x

i)2.

Theorem 3 Yang & Tokdar 4.1: Under assumption Q, for any µ∗ ∈ R, σ∗ ∈ support(πσ) and
f∗ ∈ Σλ∗,α∗,δ∗

A and with maxs d
∗
s ≤ D0 and k < K0, the posterior contraction rate at θ∗ =

(µ∗, f∗, σ∗) is of order ϵn(log n)(1+D0)/2 where

ϵ2n =
k∑

s=1

λ∗2
s (

√
nλ∗

s

σ∗ )−4α∗
s/(2α

∗
s+d∗s)(log n)2qs +

σ∗2∑
s d

∗
s

n
log p

with qs = (1 + d∗s)/(2 + d∗s/α
∗
s), 1 ≤ s ≤ k, provided K0 log p ≤ nϵ2n.

The theorem follows from the existence of spaces of functions Fn such that the follow-
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ing three conditions hold for prior probability P

P (||µ+ f − µ∗ − f∗||n ≤ ϵn) ≥ exp(−nϵ2n),

P (µ+ f /∈ Fn) ≤ exp(−4nϵ2n),

logN(ϵ̄n,Fn, || · ||∞) ≤ nϵ2n,

(4)

where ϵ̂n = ϵn(log(n)
(1+D0)/2). The first condition is satisfied by any sequence that asymp-

totically approaches the definition of ϵn as defined in theorem 4.1. The second and third
conditions are satisfied when n−γ1 ≤ ϵn ≤ n−γ2 for some γ1 ≤ γ2 ≤ 1/2 and K0 log p ≤ nϵ2n.

4 Discussion and Conclusions

Theorem 4.1 shows that the posterior of an add-GP prior is consistent for the fixed de-
sign regression problem which is a useful result. (van der Vaart & van Zanten, 2009) also
demonstrates consistency of posteriors for transformed rescaled Gaussian process priors
when applied to density estimation and classification problems where more information is
known about target distribution f . We can also extend these application to add-GP priors.
In the case of density estimation, we can achieve the optimal contraction rate if we let the
target function f be equal to log(π) where π is the target density. The prior on π in this case
is the exponential transformation of an add GP prior. For classification, if we transform
the add GP process using a logistic or normal distribution density, the result is a prior over
functions mapping X → (0, 1).

Other non-Gaussian process methods of estimation, such as log spline models, are able
to achieve an adaptive contraction rate that avoids the log n factor (Ghosal, Lember, &
van der Vaart, 2008). Perhaps extensions of these methods under M3 assumptions would
be able to achieve the M3 minimax rate.
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